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Abstract—Over the past two decades, implementing routing
lookups in dedicated hardware has been accepted as an undis-
putable gold standard in core Internet routers due to ever increas-
ing performance requirements and unabated global routing table
growth. Several recent proposals depart from that line of thinking
and suggest that software algorithms running on commodity
multi-core CPUs might (again) become well suited for the task.
In this article we describe a refined implementation of the DXR
routing lookup scheme and subject it to a series of synthetic
tests using BGP table snapshots from major Internet exchange
points. Our measurements show that the algorithm scales nearly
linearly on contemporary multi-core microprocessors, while the
achieved peak aggregate throughput of almost 2.5 billion lookups
per second presents an over a threefold increase over previously
published results. Our experiments show that the aggregate
throughput of a software routing lookup algorithm running on
a modern commodity microprocessor can outperform a state-of-
the-art ASIC chip by more than an order of magnitude, with
reasonable expectations that this gap could easily double on the
emerging 32- and 36- thread commodity CPUs.

Index Terms—Internet, IP networks, Routing, Table lookup,
Multicore processing, Performance evaluation

I. INTRODUCTION

Internet router vendors had to work hard to start introducing

100 Gbit/s interfaces to the market, yet providing sufficiently

high routing lookup throughput remains among the major

challenges in designing router interface cards for even higher

speeds (200, 400 Gbit/s and above). To forward minimum-

sized IPv4 packets at 400 Gbit/s Ethernet line speed, a core

Internet router must perform 579 million routing lookups per

second (Mlps) in a database which today consists of nearly

680.000 network prefixes [1] and is continually growing. This

requirement is more than four times higher than the capac-

ity of a dedicated, state-of-the-art router application-specific

integrated circuit (ASIC) from a dominant vendor, which is

limited to 140 Mlps of unidirectional packet forwarding, or

280 Mlps bidirectional [2], with no (published) performance

improvements since 2013.

The evolution of routing ASICs is bounded not only by

technological challenges in contemporary silicon design and

power dissipation management issues at peak operating con-

ditions, but perhaps even more by the long, complex and

risky development cycles, as well as prohibitively high cost

of access to advanced silicon manufacturing processes, which

permits only a handful of core router vendors to invest in the

increasingly expensive design efforts. Consequently, smaller

companies and especially academia are faced with a practically

impenetrable barrier of entry to innovation in the field of high-

performance router design, which negatively impacts the pace

of further technological advances.

Compared to software-based routers, a significant drawback

of routing ASICs is their relative inflexibility, which becomes

more pronounced as network operators embrace various levels

of routing function virtualization, and as the ability to quickly

respond to unpredictable malicious threats and security chal-

lenges is becoming vital to real-world network operations.

A considerable interest has therefore arisen in (re)exploring

the feasibility of utilizing general-purpose CPUs in the for-

warding path of high-performance routers, a concept which

has been all but abandoned around two decades ago, as

it was deemed by far too slow for the rapid increases in

transmission rates. However, compared to their counterparts

from 15 years ago, contemporary multi-core general-purpose

CPUs offer a completely different performance potential,

which several recent proposals [3] [4] [5] [6] are leveraging

to offer routing lookup throughputs which rival or exceed the

performance of dedicated router ASICs. In this article, we

focus on DXR [6] as one of the pioneering proposals among

such routing lookup schemes, and following a few refinements

in its implementation, we subject it to a series of synthetic tests

on several modern commodity multi-core CPUs.

The rest of the paper is structured as follows: Section II

outlines the related work in the field. Section III briefly

presents DXR and discusses its runtime tradeoffs, along with

the improvements we introduced while reimplementing the al-

gorithm as a Click [7] processing module. Section IV contains

a detailed performance evaluation under different operating

conditions. Directions for further research and concluding

remarks are provided in Section V.

II. EVOLUTION, DEMISE AND REVIVAL OF

SOFTWARE-BASED ROUTING LOOKUP SCHEMES

Early IP routers were all entirely software-based. Since by

today’s standards both line speeds and routing tables were

miniscule, this worked well until mid-1990s when the Internet

begun to expand at unprecedented rates. A wider adoption

of faster transmission technologies, such as 155 Mbit/s ATM

or 100 Mbit/s Ethernet, along with rapid increases in global

routing table sizes and the introduction of Classless interdo-

main routing (CIDR) [8] pushed software routers to their limits



and called for rapid innovations. A comprehensive survey of

software-based solutions up to the year 2001 can be found

in Ruiz-Sanchez et al. [9] and Waldvogel et al. [10]. Those

approaches involve tries [11], optimized by compressing long

paths (Level-Compressed tries, [12]), or using n-ary branching

(Multibit Tries, [13]). In its time, the Lulea scheme [14]

offered promising lookup throughputs, by partitioning the trie

in three levels (using 16, 8, 8 bits) and enabling the use of a

compact pointers representation.

Nevertheless, none of the proposals could keep up with

the exponential growth of both transmission speeds (1 and

10 Gbit/s) and the global routing table size, which by 1997

included over 40,000 prefixes. The schemes had quite large

memory footprints, from 24 bytes per prefix of the Lampson-

Varghese scheme [15] to 4.5 bytes per prefix of the Lulea [14],

which prevented the lookup structures to fit into CPU caches

as BGP table sizes continued to grow.

Both the research community and the industry shifted their

focus to routing lookup methods optimized for dedicated hard-

ware. Early implementations were constructed around ternary

content-addressable memories (TCAMs) [16], but again those

could not keep up with BGP table increases due to TCAM’s

low density and high power dissipation [17].

To cope with unabated BGP table growth, proposals to

cache recent lookups in small but fast on-chip memories

have surfaced occasionally (such as [18] or [19]) but never

got embraced since both the vendors and operators learned

that betting on traffic locality does not work well inside the

Internet core due to unpredictable and constantly evolving

traffic patterns.

A class of hardware-optimized approaches expands the

root of the tree into a 2
k array of pointers to sub trees,

such as DIR-24-8 [20] which could yield around 20 Mlps

using a pipelined ASIC- or FPGA-based implementation and

two external commodity DRAM chips. As more throughput

could be achieved by simply throwing more parallel hardware

(DRAMs) at the task, the major router vendors have been

reportedly taking that route [21] to scale their ASICs into 100-

300 Mlps throughput range, but cannot scale much further.

Recent proposals shift the focus back to CPUs for solving

the problem of fast routing lookups. The original DXR re-

port [6] claims compact Forwarding Information Base (FIB)

encoding from 1.8 Bytes/prefix, and over 700 Mlps on an 8-

core commodity CPUs. In [22] and [3] the authors propose

an information-theoretic approach for FIB compression to

less than a byte per prefix, and projected lookup speeds to

around 18 Mlps per CPU core. Another proposal, Poptrie [4]

reportedly peaks between 174 and 240 Mlps with a single core

and tables with 500-800k routes, and can achieve 914 Mlps

with four CPU cores. SAIL [5] claims 236 Mlps with random

traffic and 625 Mlps with localities in traffic patterns.

III. DXR IMPLEMENTATION AND REFINEMENTS

DXR is a novel yet simple IPv4 routing lookup scheme

which aims at leveraging key properties of modern micropro-

cessors (large caches, short pipelines, out-of-order execution)

Figure 1. A simplified diagram of key DXR’s data structures [6]. The lookup
table has fixed size (2K 32-bit entries), whereas the size of the range table
is variable. In our re-implementation chunks in the range table are reference-
counted objects, i.e. multiple lookup table entries can point to a single chunk,
which further reduces an already compact memory footprint of DXR’s lookup
structures.

for obtaining high lookup throughputs. The key idea behind

the scheme is a transformation of the traditional routing table

notation as a set of {prefix, length, next hop} tuples, into

a sorted array of address intervals or ranges, which can be

iteratively searched in logarithmic time. During the process of

constructing the lookup structures, adjacent ranges which point

to an identical next hop are merged together, which inherently

decreases both the size of the structures as well as the lookup

time. To reduce the number of iterations per lookup, the entire

address space is partitioned into 2
K smaller uniform blocks

called range chunks. The initial K bits of the lookup key

are used for directly indexing a lookup table in order to find

the corresponding chunk inside range table entries. Figure 1

shows the arrangement for K = 16. The original paper [6]

provides more details on data structures, in particular how the

range table can be compactly encoded in DXR arrangements

with K >= 16, and how further twofold compression can

be achieved for chunks which reference only 8-bit next hop

indices and correspond to prefix lengths up to 24 bits.

A suitable tradeoff between lookup table size and reduction

in number of remaining iterative search steps can be tuned by

choosing an appropriate value for K . As reducing the effective

memory access latency depends on enabling data structures

to reside as high as possible in the CPU cache hierarchy, in

practice the most useful choices for K have been shown to

be in 16 to 20 range, which corresponds to lookup structure

footprints from around 1 to 5 MBytes, or 1.76 to 7.32 bytes

per prefix, as shown in Table I.

The original DXR code was written in ANSI-C and targeted

for execution inside the FreeBSD kernel. We recoded the

algorithm in C++ and implemented it as a processing module

inside the Click modular router [7]. For simplicity, we decided

to retain the original BSD radix tree code [11] as a backing
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Figure 2. Distribution of prefix lengths for two of the linx.routeviews.org [23]
BGP snapshots, April 2017. The University of Oregon snapshot has an
unusually high proportion of prefixes with prefix lengths higher than 24,
compared to other BGP snapshots.

store for the routing table, hence we encapsulated its ANSI-C

implementation in an additional Click class / element. Such

an approach simplified the construction of a portable synthetic

testbench. Implementation inside Click also resulted in instant

portability to other operating systems, such as Linux. More im-

portantly, the new implementation allows multiple independent

DXR instances to coexist inside a single Click configuration,

which will permit us to conduct future experiments focused

on network function virtualization implications.

As an improvement over the original implementation, our

DXR/Click version implements chunks as reference counted

objects, which reduces the lookup structure’s memory footprint

by the size of each identical chunk copy. In practice, this has

been shown to yield virtually no impact with most compact

(K = 16 or K = 17) lookup structure configurations, while

for higher values of K the size reduction and thus lookup

throughput becomes measureable, though still negligible.

Finally, we also reimplemented the DirectIPLookup Click

element which embodies the DIR-24-8 lookup scheme [20].

This was necessary since the original DirectIPLookup imple-

mentation (dating from 2005) could not build lookup structures

corresponding to contemporary databases of nearly 680.000

prefixes in reasonably short timeframes. A fully functional Di-

rectIPLookup element permitted us not only to compare DXR

against DIR-24-8 performancewise, but to check them both for

correctness against the proven BSD radix tree implementation,

which led to discovery of several subtle bugs in the original

DXR version, which we subsequently rectified.

IV. PERFORMANCE EVALUATION

We conducted a series of synthetic lookup throughput

experiments using streams of randomly generated keys (IPv4

addresses) along with freely available IPv4 routing table

snapshots from several major Internet exchange points [23].

From the available snapshots, we chose to focus on those

with the largest number of adjacent next hops, as next hop

diversity tends to reduce the opportunities for route / address

range aggregations and therefore puts more strain on lookup

operations. As shown in Table I, our test vectors include both

recent (from April 2017), as well as several snapshots from

2014, as a reference for evaluating the impact of route table

growth.

Prefixes with lengths of /24 dominate in all snapshots,

followed by less specifics, similar to two snapshots shown

in Figure 2. Since networks with prefix lengths more specific

than /24 typically originate from peering links between BGP

speakers in Internet exchange points, they are less often

globally announced. A recent snapshot from the University

of Oregon stands out from the rest by including a dispro-

portionate amount of prefixes with prefix lengths higher than

24, which also contributes to the total number of prefixes

which in that particular snapshot exceeds the average of other

Internet exchange points by around 40,000, an anomaly which

we did not further investigate. Instead, we decided to choose

the recent LINX snapshot as the baseline for most of our

experiments, since it includes the largest number of unique

next hops, and as such minimizes the opportunities for route

/ range aggregation. Nevertheless, in an experiment where we

compared the impact of routing table properties (number of

prefixes and next hops) on aggregate lookup throughput shows

that the performance variations with different snapshots are

minimal (around 5%), as visible in Figure 3.

Figure 4 shows how the arrangement of DXR structures

(parameter K) influences peak single-thread lookup through-

put, driven by a stream of uniformly random (RND) keys.

We ran the same experiment on five machines with different

core counts, cache sizes, clock speeds and memory access

latencies, as shown in Table II. The machines with bigger L3

caches benefited more from DXR configurations with higher

values of K , but as soon as the size of lookup structures

approached or exceeded the cache size, lookup throughputs

collapsed due to excessive latencies of fetching data from

the external DRAM. As there were no dependencies between

successive queries, even when data has to be fetched from
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Figure 3. Aggregate lookup throughput for different BGP table snapshots
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of uniformly random lookup keys. The reduced slope in throughput increase
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scheduled on simultaneous multi-threading (SMT) virtual cores.



Table I
CHARACTERIZATION OF DXR DATA STRUCTURES FOR SEVERAL FULL-VIEW IPV4 ROUTING TABLE SNAPSHOTS.

k = 16 (D16R scheme) k = 20 (D20R scheme)

Table IPv4 Next Footprint Direct Range fragments Build Footprint Direct Range fragments Build
snapshot prefixes hops (bytes) coverage short long (ms) (bytes) coverage short long (ms)

PAIX 2014 504818 58 879964 75.6 % 269536 19687 70.1 4636992 94.0 % 210208 5568 316.0
EQIX 2014 493049 58 807280 77.6 % 236388 18090 92.0 4563208 94.7 % 177834 3309 687.2
LINX 2014 513644 239 954568 75.3 % 269850 38181 98.7 4706452 93.8 % 237728 9173 758.9
PAIX 2017 675791 85 970664 73.3 % 313376 20442 94.1 4694696 93.0 % 237316 6440 501.0
EQIX 2017 672790 159 952136 73.7 % 302256 21370 120.0 4663640 93.2 % 220446 7111 911.3
LINX 2017 663729 560 1170504 73.0 % 280318 86931 120.4 4856504 92.7 % 293006 19047 900.4
UOR 2017 713253 34 1192072 72.4 % 287726 88619 102.1 4873896 92.6 % 286844 26476 524.3

Table II
CHARACTERIZATION OF MICROPROCESSOR CACHE HIERARCHIES AND ACCESS LATENCIES.

Level 1 Cache Level 2 Cache Level 3 Cache DRAM

Cores / Clock Size Latency Size Latency Size Latency Latency
Processor Year Threads GHz KB cycles ns KB cycles ns KB cycles ns cycles ns

Intel i5-3210M 2012 2 / 4 2.5 32 7 2.9 256 13 5.3 3072 24 9.7 214 85.8
Intel i3-4150 2014 2 / 4 3.5 32 9 2.6 256 16 4.6 3072 35 10.1 243 69.6
Intel i7-4771 2013 4 / 8 3.5 32 9 2.6 256 16 4.6 8192 38 10.9 260 74.3

Intel i7-5930K 2014 6 / 12 3.5 32 9 2.6 256 15 4.3 15360 51 14.6 263 75.2
Intel E5-2658 2013 10 / 20 2.4 32 9 3.8 256 16 6.7 25600 46 19.2 237 98.8

AMD R7-1700 2017 8 / 16 3.4 32 10 3.0 512 21 6.2 2 * 8192 43 12.7 352 103.8

cache layers far from the processor core or even DRAM, out-

of-order execution mechanics could begin to resolve the next

key, thus effectively interleaving several lookups.

Figure 5 shows the effects of introducing artificial depen-

dencies between successive lookups by logically XORing each

key with the result of the previous query. In such a setting the

CPU’s out-of-order scheduler was unable to pipeline memory

reads since the address of each memory read could not be

computed before the previous lookup was completely resolved.

The top effective throughput was significantly lower compared

to operation on independent keys (70 Mlps vs. 235 Mlps).

How the algorithm scales on multiple execution cores

depending on the choice of parameter K is shown in Figure 6.

The graph shows the increases in lookup throughput with

additional worker threads on an AMD Ryzen 7-1700 machine,

using a stream of independent, uniformly random lookup keys

(RND test) as a stimulus. Similar trending was observed on

other machines as well, with different choices of K yielding

the best overall throughput which can be correlated to the size

of CPU caches, as previously shown in Figures 4 and 5. We

decided to show only the graph for the AMD machine, since

it was the most modern one we had at our disposal, and since

it yielded the top aggregate throughput among all tested CPUs

at 2,449 Mlps (i.e. 2.45 billion lookups per second). Another

important result that can be observed in Figure 6 is how well

the DXR scheme scales compared to DIR-24-8, which has a

working-set footprint of around 33 MB, and which thus does

not fit the lookup structures in CPU’s caches. While DXR and

DIR-24-8 yielded comparable throughputs on a single CPU

core, as soon as more worker threads were introduced, the

throughput of DIR-24-8 saturated and even slightly collapsed

due to the inability of the DRAM subsystem to service random

access read patterns beyond a certain threshold.

Again, introducing artificial dependencies between sub-

sequent queries had negative impact with multiple worker

threads, as shown in Figure 7 (SEQ test). Conversely, Figure 8

illustrates how the tested algorithms could behave when sub-

jected to traffic patterns with certain degree of locality (REP

test), which is a natural property of regular (nonmalicious)

transfers in the Internet. In this test we introduced a small

sliding window under which random keys were repeatedly

used, which permitted the lookup structures to be reused for

several times after they migrated to L1 cache, before being

displaced by other random keys. Both DXR and DIR-24-8

show an increase in overall throughput under such conditions,

though DIR-24-8 benefits more from traffic locality, as its

pressure on the DRAM subsystem gets reduced.

Since the drivers for the built-in monitoring infrastructure on

AMD Ryzen CPU were not yet available, we conducted further

tests on Intel machines which have better support for hardware

performance counters, in order to determine the levels of

pressure on DRAM subsystem by tracking last-level-cache

miss counters [24]. Figure 9 shows the correlation between

lookup throughput for DXR configured with K = 19 and

DIR-24-8 on a low-end Intel CPU. Per statistics harvested

from the LLC miss counter, DIR-24-8 saturated the DRAM

subsystem already with two worker threads at around 120

millions L3 cache misses per second, while achieving the top

lookup throughput with three worker threads. In contrast to

this, DXR scaled well to all CPU cores, while achieving peak

lookup throughput roughly four times higher than DIR-24-8,

at a fraction of L3 cache misses. It should be noted that a

certain portion of L3 misses in all cases can be attributed to

unavoidable fetching of random keys from the memory, as

well as storing the results (next hop indices) back to another

memory array. Figure 10 shows the similar effect on L3



cache trashing with the SEQ test which introduces artificial

dependencies between successive lookups.

V. CONCLUSION AND FUTURE WORK

The main contribution of our paper is an empiric proof that

software routing lookups can easily achieve throughputs of

2.45 billion lookups per second on modern commodity multi-

core microprocessors, with a healthy margin for executing

other CPU-intensive tasks, or streaming large amounts of data

over I/O and DRAM buses. The peak throughputs we achieved

are more than three times higher than previously published

top scores for software-based schemes, and over an order of

magnitude higher than the capacities of today’s top-of-the-line

router ASICs. More importantly, executing the synthetic tests

on machines capable of supporting many (16 to 20) hardware

threads, shows that near linear scaling to multiple execution

cores can be sustained by careful choice of lookup structure

configuration, which raises our expectations that the algorithm

could continue to scale smoothly on emerging commodity

CPUs which will support 32 to 36 execution threads, which

could translate to throughputs in 5 GLps range in the near

future.

Another important result of our experiments is a demon-

stration that the significant growth in global routing table size

has only a moderate impact on routing lookup performance, as

the increase of around 35% in the number of prefixes observed

over the past three years yields variations of only around 5%

in routing lookup throughput. This leads to a conclusion that

the imminent future gains in global routing table size will be

easily offset by sheer increases in the number of cores per die

of the emerging many-core microprocessors.

We expect that the compact memory footprint of modern

routing lookup structures will make it a feasible choice for

various network function virtualization scenarios and applica-

tions, with acceptable performance penalties due to unavoid-

able increases in working set scope and thus cache trashing

and more intensive DRAM traffic. We are planning to shift

the focus of our further research and experimentation in that

direction.
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