BASIC(1) BASIC(1)

DESCRIPTION
Rabbit BASIC is an interpreter for a dialect of the BASIC programming language loosely modelled around
the historic Dartmouth BSIC. Theinterpreter operates either in interaetnode, which permits issuing
individual commands or editing the current program, or in run mo@eytng the program loaded into the
main memory.

At startup, the interpreter attempts to load axetete a program calledutoexec.ba# the current direc-
tory on UNIX machines, or from the root directory of the on-board Flaske dvhen running on the
ULX2S FPGA board.If the startup program can not be found or iscetion terminates, an interacti

line editor is ivoked which accepts and processes all subsequent input from the controlling terminal.

INTERACTIVE MODE
All lines prepended with a numeric line identifier are assumed to be a part of a program and will be stored
in the main memory at a position corresponding to the specified line nuamterill not be further ealu-
ated or interpreted until programeeution bgins. Comwersely, lines entered without a line number will be
interpreted andxecuted immediately The command line interpreter features a histarffelo which per
mits repeating and editing previously issued commafdsproper operation the line editor requires a ter
minal emulator capable of correctly handling a small subset ef00Tcontrol sequences as well as encod-
ing navigation kys using VT-100 control codes.

The following control kys may be used for navigation and line editing:

<ctrl-C>
Interrupts editing of the current line, discarding all input.

<ctrl-R>
Redravs the current line. Handy when the terminal emulator does not correctly interpret all
VT-100 control sequences.

<ctrl-L>
Clears the entire screen, then redraws the current line.

<ctrl-P> or <cursor-up>
Discards the current line and replaces it with the previous line from history buffer.

<ctrl-N> or <cursor-down>
Discards the current line and replaces it with the next line from history buffer.

<ctrl-B> or <cursor-left>
Moves aursor one position to the left.

<ctrl-F> or <cursor-left>
Moves aursor one position to the right.

<ctrl-A> or <Home>
Moves aursor to the first character.

<ctrl-E> or <End>
Moves aursor to the end of the line.

<ctrl-H> or <Backspace>
Deletes the character before current cursor position.

<ctrl-D> or <Delete>
Deletes the character at current cursor position.

<ctrl-O> or <Insert>
Toggles between insert andepwrite mode.

<ctrl-1> or <Tab>
Inserts space characters so that tive e@sor position becomes aligned to multiples of four.

BASIC(1) BASIC(1)

COMMANDS
REM oror’{tex}>
An arbitrary comment, ignored by the interpreter.

LET var = exp
Evaluate the xpressionexp and assign its value t@sablevar. The LET leyword may be omit-
ted for brevity.

PRINT or? {arg, ...}

PRINT #f { arg, ... }
Prints a variable number of arguments to the terminal. The arguments may be separated either by
commas or semi-colonsA comma indicates that the cursor will be adeed to the next tab stop
(typically 8 characters)The output may be directed to a file if a file descriptor preceeded by a
hash sign is provided as the first argument.

INPUT {#f, }varl{, ...}

INPUT "txt"; varl {, ...}
Input data from a terminal or from a file and store it into nanseive(s). An optional message
stringtxt can be displayed before processing input from the controlling terminal.

LINPUT {#f, } var

LINPUT "txt"; var
Input a whole line (ignoring separators) into a single string vanatle

GOTO Inum
Unconditionally jump to the program line specifieditoym.

GOSUB Inum
Jump to a subrutine at lileum, saving the current line number on the return stack.

ON expr GOTO Inuml {, Inum2 ...}
Jump to the line number selected from the list foillg the GO gatement and inded by the
value ofexpr. If expr is less than or equal to zero or exceeds the number of elements in the list
then proceed to the next instruction.

ON expr GOSUB Inum1 {, Inum2 ... }
Jump to a subroutine at the line number selected from the listviiojadhe GG OSUB statement
indexed by the value ofexpr, saving the current line number on the return stalfkexpr is less
than or equal to zero or exceeds the number of elements in the list then proceedxbitisé ne
tion.

RETURN
Return from a subroutine, resumingeution at the line following the last GOSUB command.

IF expr THEN commands { ELSE commands }
Evaluate the xgpressionexpr and if the result is non-zeraxeeute command(s) following the
THEN keyword. Optionally an B.SE keyword may be included followed by command(s) to be
executed if the gpressionexpr evduates to zeroA line line number may be specified instead of a
command follaving either or both THEN and ELSEeWwords, which implies a GUD to the
requested line.

FOR var = exprl TO expr2 { STEP expr3 }
Beginning of a FOR loop. The value o&nablevar will be initialized to the value ofxprl and
will be increased on each subsequent loop iteration either by one or by the vaipe3of the
optional STEP &yword is specified. Looping will continue as long as the valueaofs less then
or equal toexpr2. The loop is alkays executed at least once.

NEXT { var, ... }
Increase thealue of \ariablevar either by one or by the alternagi STEP specified in the corre-
sponding FOR statement. If thalue of the variable exceeds the limit specified in the FOR

BASIC(1) BASIC(1)

statement, advance to thexhprogram line, otherwise jump to the line immediately following the
FOR statement. Multiple variable names may be specifiedwioigp the NEXT leyword, in
which case each one is processed only after the completion of the inneAltenpatively, the
NEXT keyword may be used with noguments, in which case it implies closure of the first unter
minated FOR loop.

WHILE expr
Beginning of a WHILE - WEND loop. The body of the loop ieeuted as long as the value of the
expressionexpr evduates to a non-zercalue. Theexpressionexpr is evaluatedbeforethe body
of the loop getsxecuted.

WEND
Terminate the body of a WHILE loop.

REPEAT
Begining of a REPERA- UNTIL loop.

UNTIL expr
Terminating statement of a REPEA UNTIL loop. The body of the loop isxecuted as long as
the value of thexpressionexpr evduates to a non-zercalue. Theexpressionexpr is evaluated
after the body of the loop getxxeruted, so the commands inside the loop are guaranteed to be
executed at least once.

DATA constant { , constant ... }
Declare comma separated numerical or string constants to be used by READ statBeAts.
statements are not permitted inside IF - THEN - ELSE constructs.

READ var {, var ... }
Read string or numeric constant(s) frorATB statements embedded in the program and assign
them to variable(s) provided as arguments.

RESTORE { Inum }
Restore the pointer for readingADA constants to the start of the program, so that the constants
can be READ again. If an optional line numbaim s provided then the restore occurs from the
start of that line. If no BTA statements are found then the REERE command searches from
the start of the program.

DIMvar(dl {,d2} {,d3}) {, ... }
Declare and allocate memory for a list of arrays (string or arithmetichaximum of three sub-
scripts can be used. All arrays must be declared via DIM before use.

BASEO |1
Specify the starting indefor arrays, which may be either zero or one.

OPEN stringexp { FOR INPUT | OUTPUT | APPEND | TERMINAL } AS exp
Open a file namesdtringexp to be used with file descriptexp. Output mode is implied, hence the
'FOR OUTPUT’ option may be omitted for brevity.

CLOSE exp
Close a file with file descript@p. Releases the file descriptor and flushes out all buffered data.

ON ERROR GOTO Inum
Register an error handler routine at linem.

RESUME { Inum }
Return from an error handle©ptionally, do rot return to the instruction which triggered the error
but to the linelnum.

DEF FNname(var {,var }) = exp
Define a functiofFNnameas a single-line expressienp.

BASIC(1) BASIC(1)

DEF FNname(var {,var })
Define a functionFNnameas a subroutine which may include multiple lines terminated by a
FNEND statement. Theesult is returned by simply assignik@N\namea value before reaching
the terminating~NEND statement.

DEFPROC name(var {,var })
Define a procedur@mame as a subroutine which may include multiple lines terminated by a
FNEND statement. Unli& functions, procedures do not return values.

FNEND
Terminating statement of BEF FNnameor a DEFPROCDblock.

LOCAL varl {,var2 .. }
Declare wariables with a scope local to functions and procedufég LOCAL statement should
be placed immediately followinB@EF FNnameor DEFPROCstatements.

MID$(stringval, start {, len }) = stringexp
Assignstringexp to stringval starting from charactestart and either replacing relen characters
or the remainder of the string.

CLS Clear the terminal screen.

POKE addr, byte
Write abyteinto a memory location addr.

RANDOM
Reseed the random number generator.

END Terminate programecution and return to the interaetimode command prompt.

STOP Terminate programecution and return to the interasti node command promptUnlike the
END command, the SJP command prints a message, and permitsxé=igon to be resumed
via the CONT command.

CONT Continue gecution of a program which has been halted by a STOP command<wtii&> .

CLEAR
Clear all variables.

NEW Close all files, clear all variables, and clear program memory.

RUN {1}
Execute the currently loaded program. An optional humeric argument can be provided indicating
a line number from which the programeeution will begin. All variables are cleared and all eur
rently open files are closed prior to starting prograscion.

LIST {start}{-end}
Display the content of the program memory to the controlling term@ptionally a range of line
numbers to display may be specified.

EDIT Inum
Edit an existing line of the program text.

AUTO { start {, step } }
Perform auto line numbering so that a program can be typed in without entering line nuémbers.
optionalstart line number and an incremestepmay also be specified.

DELETE start - end
Delete a range of lines betwestart andendinclusively.

BYE Terminate the wecution of the interpreteclosing all files.

SAVE stringexp
Save the current program to a named file.

BASIC(1) BASIC(1)

LOAD stringexp
Close all files and clear all variables, then load a program fromsttiheexp.

MERGE stringexp
Read a program from filgtringexp end mege it with the current program stored in main memory
Program lines in current program whichvbahe same line numbers as the lines from the file
stringexp will be silently overwritten.

CHAIN stringexp
Load a program from filstringexp, and execute it immediately Numeric variables are presen
but all arrays and strings are cleared.

ERROR exp
Execute the gen eror sequence, which may be useful for debugging of error handler routines.

DIR { path }
List directory contents of the current directaoy of the targetpathif provided.

CD path
Change current directory fmth.

PWD Print the current directory.

KILL path
Remae a fle or directory pointed to bgath Directories must be empty for the requestt to suc-
ceed.

MKDIR path
Create a directory giath

COPY src_path, dst_path
Copy a file from src_pathto dst_path If the destination file already exists it will be silentlyee
written.

RENAME from_path, to_path
Rename a file namefilom_pathto to_path

EXEC path
Load a binary program (MIP<ecutable) from file apathinto SRAM and gecute it, displacing
the BASIC interpreter.

MORE path
Display an ASCII file pointed to byath to the controlling terminal line by line, pausing each
page (24 lines) for terminal inpuPressing<space> displays another page, whereas pressing
<enter> or <j> displays a single meline. Thepager may be interrupted by pressigp or
<ctrl+C> .

BAUDS expr
Change the serial console baud rate. The FT232R USBART Wridge on the ULX2S FPGA
board should wrk well with most standard baud rates ranging from 300 to 3000000 b&hds.
default speed is 115200 bauds.

SLEEP expr
Pause program»ecution forexpr seconds. Fractionablues are permitted for specifying delays
with sub-second resolution.

VIDMODE expr {, scaling {, onroot}}
Choose one of four possible video output modes, identified by integer values in range from 0 to 3.
Mode 0 uses a fixed 8-bit colour pallete, whereas mode 1 uses a fixed 16-bit pallete for each of
512 (W) x 288 (H) pixels in a fixed-size video display matrix. Mode 2 displays a static test image,
while mode 3 completely turnsfahe video output.Modes 2 and 3 do not consumey amemory
bandwidth, hence permit the CPU to operate at full speed, whereegirgtihe framebffer
(modes 0 and 1) may ¥ a roticeable impact on programeeution performance. By default the

BASIC(1) BASIC(1)

video framedffer is turned df(mode 3). An optional intger scalingfactor ranging from 1 to 4
may be specified when displaying the graphical output on an X11 schelelitionally, graphic
output may be directed to the root wimdby setting onroot parameter to 1Scaling factor and
onroot parameters are silently ignored when BASIC is running on the ULX2S FPGA Ibixged.
that each imocation of VIDMODE command implicitly clears all currently defined sprites (see
below).

DRAWABLE expr
Sets dravable framelffer to the value oéxpr, which may be either 0 or IFramebufier O is the
default, and is automatically allocated each time video mode gets changed MIDMODE
command, whereas framgfer 1 will be automatically allocated the first time it gets referenced
using theDRANVABLE command.

VISIBLE expr
Sets visible framaldfer to the value oéxpr, which may be either 0 or 1IFramebufer O is the
default, whereas framebuffer 1 must be first allocated usinDR#&VABLE command.

INK color
Select a color to be used in subsequent graphics operations. Colors may be specified in three dif-
ferent formats. If the gument provided is a string and the first character of the argument is "#",
then next six characters are interpreted asdhecimal values in form idRGGBB corresponding
to 8-bit values of red, green and blue componeAtternatively, if the argument is a string and its
first character is not "#", then the colaykis arched for in the following palletblack, gray,
gray25 gray50 gray75 white, red, green navy, blue, teal, lime, cyan indigo, maroon purple,
olive, brown, violet, khaki, magenta, orange pink, yellow. Finally, a mlor may be specified as a
numeric \alue, which will be interpreted differently depending on the pallete in use (8-bit or
16-bit).

PAPER color
Select a color to be used as a background when drawingTieesame syntax and rules as for the

INK command apply Additionally, transparent background may be selected by specifying -1 as
the color value.

PLOT x0,y0{, x1,y1 ...}
Draw a dngle pixel at coordinatefx0,y0) If additional coordinates are proled then continue
drawing lines to coordinates corresponding to further argument pairs.

LINET Ox0, y0 {, x1,y1 ...}
Draw a line from the last cursor position to a pixel at coordinét@g/0) If additional coordinates
are provided then continue drawing lines to coordinates corresponding to further argument pairs.

RECTANGLE x0, y0, x1, y1 {, fill}
Draw a border of a rectangle defined by the provided coordindfesn optional agumentfill is
provided and its value is non-zero, then the entiggore encompassed by the rectangle is filled
with current color.

CIRCLE x, y, r{, fill}
Draw a drcle atx, y with radiusr. If an gptional agumentfill is provided and its value is non-
zero, then the entire region encompassed by the circle is filled with current color.

TEXT x, vy, gringexpr {, scale_x {, scale_y}}
Draw text stringexpr atx, y. Optional agumentsscale_xandscale_ymay be specified to increase
the size of the font.

FILL X, y
Flood the area at coordinateandy of the dravable framebuffer with the current ink color.

LOADJPG path
Load a JPEG image from a file pointed topgaghdirectly to the dravable framebuffer.

BASIC(1) BASIC(1)

SPRGRAB spr_id, x0, y0, x1, y1
Create a sprite uniquely identified by a pesithtegerspr_id and fill it with data from the dve
able framebuffer enclosed in a rectangular area defined by coordiag@sx1 andyl.

SPRLOAD spr_id, path {, downscaling_factor}
Create a sprite uniquely identified by a pesitintegerspr_id and populate it with JPEG image
loaded from a file gpath. An optional integer parametelownscaling_factoin range between 0
and 3 may be specified to reduce the size of the sprite. Note that creating sprites bigger than the
framebufer area (512 * 288) is permitted, though should be used with care in ordeidoreem-
ory exhaustion problems, especially on constrained platforms such as the ULX2S board.

SPRTRANS spr_id, color
Declarecolor as transparent for existing spriper_id.
SPRPUT spr_id, x, y
Place spritespr_id on the dravable framebuffer at coordinatesandy.
SPRFREE {spr_id}
Destry al defined sprites and return the occupied memory to the free memory cah
optionalspr_id argument is provided, only the selected sprite is freed.
FUNCTIONS
MIN(X, ...)
Returns the minimum value among all of the provided arguments.
MAX(X, ...)
Returns the max value among all of the provided arguments.
ABS(x)
Returns the absolute value of x.
SGN(x)
Returns the sign of the argument x, which can be -1, 0 or 1.

INT(x) Return the integer part of x.
SQRT(x)
Returns the square root of x.
LOG(x)
Returns the natural logarithm of x.
LOG10(x)
Returns the logarithm in base 10 of x.
EXP(x)
Returns e"x. e=2.7182818..
SIN(x) COS(x) TAN(x) ASIN(x) ACOS(x) ATAN(X)
Trignometric functions.
SINH(x) COSH(x) TANH(x) ASINH(x) ACOSH(x) ATANH(x)
Hyperbolic functions.

RND Returns an integer random number between 1 and 32767.

RND(x)
If x is zero returns a random number between 0 and 1 otherwise returngan riatelom number
between 1 and INT(x).

PEEK(x)
Returns the value of a byte from memory at address x.

MID$(a$, start {, len })
Returns a substring @$ between charactestart and the end of the string. If optionabament
lenis provided, the substring will be restrictedea characters.

BASIC(1) BASIC(1)

RIGHT$(a$,))
Returns the right j characters of a$.

LEFT$(a$.))
Returns the left j characters of a$.

STRING$(a$,))
Returns a$ repeated j times.

ERMSG$())

Returns the j'th error message.
CHR$())

Returns the ascii character corresponding to the value of j.
STR$(expr)

Evaluate numeric expressienpr and cower the result to a string.
SPACES())

Returns a string of j spaces.

DIR$(path$)
Returns the list of file names residing in a directory at path$.

LEN(a$)
Returns the length of string a$.

VAL(a$)
Returns the value of the number specified by the string.

ASC(a%)
Returns the ascii code for the first element of a$.

INSTR(a$, b$ {,c})
Return the position of first occurence of straffjinside stringo$. If optional agumentc is pro-
vided then the search begins from character

EOF(f) Returns true if the file specified by f has reached the end of the file.

POSN(f)
Returns the current printing position in the file. If f is zero then it is the printing position of-the ter
minal.

EVAL(a$)
Evaluates the expression defined by the string a$. e.g. EVAL("12") returns the value 12.

Pl Returns the value of pi. = 3.141592653589...

ERL Returns the line number of the last errdero if error was in immeadiate mode.
ERR Returns the error code of the last error.
TIM Returns a numeric value for the number of seconds since interpreter startup.

CURKEYS
Returns a bitmappediue corresponding to the current state of cursor buttond E@s, luttons
and swithiesbelor). Whenrunning in an X11 environment, space bar is mapped tbtthecen-

ter key.

MATHEMATICAL OPERA TORS

" exponentiation

* multiplication

/ division

MOD remainder

+ addition

- subtraction

BASIC(1) BASIC(1)

AND bitwise and

OR bitwiseor

XOR bitwiseexclusive a
NOT bitwise not

<= lessthan or equal
<> notequal to

>= greatethan or equal
= equal

> greater than

< less than

EXPRESSION SYNTAX
stringexp ::=string | string + stringexp
string ::=gstring | stringvar | stringfunc
gstrings :="any char" | ‘ary char'
stringvar :=numbvar$ | numbar$[diml { ,dim2 {, dim3}}]

val ;:=term | term sep val
| not val | - val
term :z=numb | valfunc | numbvr
| gringexp csep stringexp
numb :=digit | digit digit+
| digit* . digit*

| digit* e {+ | -} digit+
| digit* . digit* e {+ | -} digit+

digit :=0123456789

numbvr ::=numbvar | subsc

numbvar ::=lett | lett alpha+

subsc :=umbvar(val {, val { ,val } })

sep =t-*/ "and or xor | csep

csep ==>><>=<==

usrfunc :=fn/numbvar { (val {,val {,val }})}

ULX2S FPGA BOARD
ULX2S is a tiy FPGA prototyping board designed primarily as an affordable teaching aid to be used in
basic digital design courses and to be easily embeddable in more xafigital systems.A pre-built
FPGA bitstream with a system-on-a-chip configuration centered around a 32-bit RISC CPU core operating
at 81.25 MHz also permitxecution of various software packages, including a BASIC interpreter.

An on-board SPI Flash memory chip can be accessed from BASIC as deskddti. In gandard configu-

ration the SPI Flash de dso hosts anxecutable binary of the BASIC interpreter which is automatically
loaded by the BM bootloader when the board is powered up. Data can be read from the on-board Flash
drive & rates of up to 10 MBytes/s, while writing speed is limited to around 185 KByféktsSPI Flash

chip does not provide gnwear-leseling machinery so wite access should be moderatekereised to

avad exceeding the chip’declared endurance of around 100.000 write cycles.

A MicroSD, MicroSDHC or MicroSDXC card formatted with thATRB2 file system and inserted in the
MicroSD slot should be accessible as diskaltD:" . Read speeds of up to 4.5 MBytes/s and write speeds
of up to 2.5 MBytes/s may be sustained depending on card type, data layout and access patterns.

1 MByte of on-board static RAM is mapped by the SoC configuration to address 0x80000000, which is
also the location where the BASIC interpreter is automatically loaded by the ROM bootldaddmear

video framehffer, if enabled, occupies either 147456 or 294912 bytes of SRAM depending on the selected
pallete (8- or 16-bit).

BASIC(1) BASIC(1)

All 1/O ports are memory-mapped to a region starting afff@f00, which permits 1/O ports to be
addressed using smallgative integers. Thefollowing ports may be safely accessed frodSBC using
PEEK and POKE:

General-Purpose Input / Output (GPIO)

A total of 29 pins on DIL connectors J1 and J2 can be controlled via GPIO @ét€& data ports can be
both read and written to, while bits in the corresponding control ports determine whether each pin is config-
ured as input (control bit cleared) or as output (control bit set). By default all pins are configured as input.
-256 (0xfffff00): GPIO data, byte 0 (input / output)

bit 0: pin j1_2

bit 1: pin j1_3

bit 2: pin j1_4

bit 3: pin j1_8

bit 4: pin j1_9

bit 5: pin j1_13

bit 6: pin j1_14

bit 7: pin j1_15

-255 (0xfffff01): GPIO data, byte 1 (input / output)

bit 0: pin j1_16
bit 1: pin j1_17
bit 2: pin j1_18
bit 3: pin j1_19
bit 4: pin j1_20
bit 5: pin j1_21
bit 6: pin j1_22
bit 7: pin j1_23

-254 (0xfffff02): GPIO data, byte 2 (input / output)

bit 0: pin j2_2

bit 1: pin j2_3

bit 2: pin j2_4

bit 3: pin j2_5

bit 4: pin j2_6

bit 5: pin j2_7

bit 6: pin j2_8

bit 7: pin j2_9

-253 (0xfffff03): GPIO data, byte 3 (input / output)

bit 0: pin j2_10

bit 1: pin j2_11

bit 2: pin j2_12

bit 3: pin j2_13

bit 4: pin j2_16

bits 5 to 7: not connected

-252 (0xfffff04): GPIO control, byte O (output only)

-251 (0xfffff05): GPIO control, byte 1 (output only)

10

BASIC(1) BASIC(1)

-250 (0xfffff06): GPIO control, byte 2 (output only)
-249 (0xfffff07): GPIO control, byte 3 (output only)
LEDs, buttons and switches

-240 (0xfffff10): pushbuttons (inpuut)

bit 0: btn_right (input)
bit 1: bnt_left (input)
bit 2: btn_down (input)
bit 3: btn_up (input)

bit 4: btn_center (input)

-239 (Oxfffff11): LEDs (output)
bits 0 to 7: led_0 to led_7 (output)
-238 (0xfffff12): DIL switches (input)

bits 0 to 3: sw_0 to sw_3 (input)
bits 4 to 7: not connected

DIAGNOSTICS
When the interpreter diseers an error it will call an error trapping routine. The errors can be caught by the
user program using the on-error feature. If no error trapping routine has been supplied a message is printed
with the corresponding line number.

EXAMPLES
Compute a sum of wvnumbers:

>?21+2
3
Ready

Compute a sine function:

>? dn(pi/4)
0.707106781
Ready

Concatenate tavstrings:

>a$ = "abc"
Ready

>pb$ = a$ + "def"
Ready

>? b$

abcdef

Ready

Iterate three times through a FOR loop:

11

BASIC(1) BASIC(1)

BUGS

>fori=1to 3: print "iteration #"; i : next i
iteration # 1

iteration # 2

iteration # 3

Ready

Display random values on LEDs until atton is pressed on the ULX2S board or until <ctrl+C> is vedei
on the controlling terminal:

> repeat : poke 240, rnd(255) : sleep 0.1 : until peek(-240) >0
Ready

A short program for computing factorials:

>10 input "f:"; f
>20r=1:fori=1tof:r=r*i:nexti
>30 print f; "1 ="; r
>40 goto 10
>list
10 INPUT "f:"; f
20r=1:FORi=10f:r=r*i:NEXTi
30 PRINT f; "I =" r
40 GOro 10
Ready
>save "factorial.bas"
Ready
>run
f:3
31=6
f:8
8! = 40320
f:100
100! = 9.33262154e157
f. <ctrl+C>
breaking at line 10
Ready

The RENUMBER commandafls to properly track and update goto targets hidden inside IF .. THEN ..
ELSE constructs.
REPEA - UNTIL loops inside functions, procedures or nested inside other loops apparently do not work.

The MOD operator is implemented usiimgod(3) so he result may or may not include a fractional part.

DISCLAIMER

THIS SOFTWARE IS PRVIDED BY THE AUTHOR AND CONTRIBJTORS ‘AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOLIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A RRTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQJENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SHRES,;
LOSS OF USE, BTA, OR FROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

12

BASIC(1) BASIC(1)

(INCLUDING NEGLIGENCE OR QHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

AUTHORS
Phil Cockcroft created the Rabbit BASIC in early 1838hile he was at Uniersity College, LondonHe
released the source code to the Public Domain in 1986 and continued to furtheeiamgranaintain it
until mid-19905. In2013. Marlk Zec added features specific to the ULX2S FPGA board, such as file man-
agement and framebuffer routines, and rewrote the line editor as well as the most of this manual.

13

